Simple Regression Model

1. The Model

$$y_i = \beta_0 + \beta_1 x_i + u_i \qquad i = 1, \dots, n$$

where

- $y_i =$ dependent variable
- x_i = independent variable
- $u_i = \text{disturbance/error term}$

Eg: y = wage (measured in 1976 dollars per hr) x = education (measured in yrs of schooling)

Alternative names for

y	X
explained variable	explanatory variable
response variable	control/treatment
predicted variable	predictor
regressand	regressor

:The joint properties of $(y,x) \Leftrightarrow (u,x)$ are key to determining the statistical properties of any estimator. So having a good idea of what generates the disturbance is important for good empirical work.

: What generates *u*?

- left out variables
- approximation error for functional form
- measurement error in y
- lacktriangle inherent randomness in relationship between y and x

: (β_0, β_1) are parameters called the "regression coefficients:

- $\beta_0 = \text{intercept}$
- β_1 = slope coefficient
- each choice of (β_0, β_1) defines a u \Leftrightarrow a particular u will define (β_0, β_1)

:ASIDE

Sometimes it is useful to imagine that the slope coefficient varies across observations, i.e.

$$\beta_{1i} = \beta_1(x_i, u_i, v_i)$$

where v_i is independent of (x_i, u_i) . Such an underlying model explains why regression coefficients vary from sample to sample. So for example, response to the math-stat review might depend on how much math you know (x_i) , persistence and intelligence (u_i) , and luck (v_i)

- The (classical) random coefficients model has $\beta_1(v_i)$ not very interesting.
- If we have important nonlinearities, then we'll see $\beta_1(x_i)$.
- Tough case is if β_1 varies with the unobservables u_i .

: Linearity is restrictive, but not as bad as it first appears. For example, suppose we have

$$V=c_0W^{c_1}arepsilon$$
 define $y=\ln(V)$ $x=\ln(W)$ $u=\ln(arepsilon)$. Then $y=eta_0+eta_1x+u$ $eta_0=\ln(c_0)$ $eta_1=c_1$

Other transformations (of either the LHS or RHS) may help to induce *linearity in parameters*, which is what we need. : If we think of (y,x) as random variables, then f(y|x) tells us everything about how probability assessment of y vary with x. Regression models focus on some measure of the "central tendency" of y given information about x.

(A)
$$E(u) = 0$$
 and $cov(u, x) = 0$
 $(\Leftrightarrow E(u) = E(ux) = 0)$
 $\therefore (\beta_0, \beta_1)$ are coefficents of BLP

(B)
$$E(u|x) = 0$$

 $(\Leftrightarrow E(ug(x)) = 0 \quad \forall g(x) \in L^2)$
 $\therefore E(y|x) = \beta_0 + \beta_1 x$

conditional mean or "Population Regression Function"

- (C) u independent of x
- (D) $y = \beta_0 + \beta_1 x$ is a causal relationship (not statistical)

2. Deriving the OLS estimates

Method 1

By definition, OLS estimates satisfy

$$(\widehat{\beta}_0, \widehat{\beta}_1) = \arg\min_{\widetilde{\beta}_0, \widetilde{\beta}_1} \sum_{i=1}^n (y_i - \widetilde{\beta}_0 - \widetilde{\beta}_1 x_i)^2$$

Rk: Given any candidate $(\widetilde{\beta}_0, \widetilde{\beta}_1)$,

- $\widetilde{y}_i = \widetilde{\beta}_0 + \widetilde{\beta}_1 x_i$ is called the fitted value,
- $\widetilde{u}_i \equiv y_i \widetilde{y}_i$ is called the residual.

I'll reserve (\hat{y}_i, \hat{u}_i) for the OLS values.

From the F.O.C., we obtain the "normal equations"

N1
$$\sum_{i=1}^{n} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i) = 0 \iff \sum_{i=1}^{n} \widehat{u}_i = 0$$
N2
$$\sum_{i=1}^{n} x_i (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i) = 0 \iff \sum_{i=1}^{n} x_i \widehat{u}_i = 0$$

Rk: Lots of authors use notation (b_0, b_1) for OLS estimations

Method 2

The BLP generates a disturbance u that satisfies E(u) = E(xu) = 0. So (β_0, β_1) of interest satisfies

$$E(y_i - \beta_0 - \beta_1 x_i) = 0$$

$$E(x(y_i - \beta_0 - \beta_1 x_i)) = 0$$

The method of moments approach picks estimators to satisfy the sample counterparts:

N1'
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i) = 0 \quad \Leftrightarrow \frac{1}{n} \sum_{i=1}^{n} \widehat{u}_i = 0$$

N2'
$$\frac{1}{n} \sum_{i=1}^{n} x_i (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i) = 0 \quad \Leftrightarrow \frac{1}{n} \sum_{i=1}^{n} x_i \widehat{u}_i = 0$$

Computing $(\widehat{\beta}_0, \widehat{\beta}_1)$

From N1/N1', we get

$$\overline{y} = \widehat{\beta}_0 + \widehat{\beta}_1 \overline{x}$$
 $\therefore \widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$

Substitute into N2/N2'. If $\sum (x_i - \overline{x})^2 > 0$, then

$$\widehat{\beta}_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

Rks: Sample Regression function is the estimated PRF (aka fitted regression line)

$$\widehat{\mathbf{y}} = \widehat{\boldsymbol{\beta}}_0 + \widehat{\boldsymbol{\beta}}_1 \mathbf{x}$$

:Prove

$$\widehat{\beta}_1 = \frac{\sum x_i (y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{\sum (x_i - \overline{x}) y_i}{\sum (x_i - \overline{x})^2}$$

:We've shown that $(\widehat{\beta}_0, \widehat{\beta}_1)$ is unique provided $\sum (x_i - \overline{x})^2 > 0$. Can you show that the fitted values \widehat{y}_i have the same values for ANY solution of the normal equations?

Eg: y = wage (measured in 1976 dollars per hr)

x = education (measured in yrs of schooling)

Suppose the fitted regression line is

$$\widehat{wage} = -0.90 + 0.54 \ educ$$

(Notice that I don't report many digits—use lots for accurate calculations but don't present them!)

- educ = 0 then $\widehat{wage} = -.90$ (-90 cents per hr)
- $educ = 8 \text{ then } \widehat{wage} = -.90 + 0.54(8) = 3.42 \text{ ($3.42 per hr)}$

Q: What's the premium to completing high school vs. grade 8?

Q: What's the premium to completing university vs HS?

Algebra of OLS

Everything follows from the normal equations

$$1.\sum \widehat{u}_i = 0$$

$$2. \sum x_i \widehat{u}_i = 0$$

Some implications of 1. & 2.

3.
$$\overline{y} = \widehat{\beta}_0 + \widehat{\beta}_1 \overline{x}$$
 (reg line goes through sample mean)

$$4. \sum \widehat{u}_i \widehat{y}_i = 0$$

Proof:

$$\sum \widehat{u}_{i} \widehat{y}_{i} = \sum \widehat{u}_{i} (\widehat{\beta}_{0} + \widehat{\beta}_{1} x_{i})$$

$$= \widehat{\beta}_{0} \sum \widehat{u}_{i} + \widehat{\beta}_{1} \sum x_{i} \widehat{u}_{i}$$

$$= 0 + 0 \quad \text{by 1. and 2. (resp)}$$

Rk: The same proof shows $\sum \hat{u}_i(c_0 + c_1x_i) = 0 \ \forall (c_0, c_1)$

4'.
$$\sum \widehat{u}_i(\widehat{y}_i - \overline{y}) = 0$$

5. (Analysis of variance)

$$y_{i} = \widehat{y}_{i} + \widehat{u}_{i}$$

$$\Leftrightarrow y_{i} - \overline{y} = \widehat{y}_{i} - \overline{y} + \widehat{u}_{i}$$

Therefore

$$\sum (y_i - \overline{y})^2 = \sum (\widehat{y}_i - \overline{y})^2 + \sum \widehat{u}_i^2 + 2 \sum \widehat{u}_i (\widehat{y}_i - \overline{y})$$

$$= \sum (\widehat{y}_i - \overline{y})^2 + \sum \widehat{u}_i^2 \quad \text{by 4'}$$

$$SST = SSE + SSR \quad \text{(Textbook's notation)}$$

Total Sum of Squares = Explained SS+Residual SS

6. Coefficient of Determination

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

- $0 \le R^2 \le 1$
- $R^2 = 1$ says exact lin. rel. between y and x
- $R^2 = 0$ says no lin. rel. between y and x

 $:R^2$ gives the fraction of the variance of y that's "explained" by the model

Exercise:

Show $R^2 = r_{yx}^2 = r_{y\hat{y}}^2$ where

$$r_{yx} = \frac{\sum (y - \overline{y})(x - \overline{x})}{\left[\sum (y - \overline{y})^2 \sum (x - \overline{x})^2\right]^{1/2}}$$

7. Computing the explained sum of squares

$$\sum (\widehat{y}_i - \overline{y})^2 = \widehat{\beta}_1^2 \sum (x - \overline{x})^2$$
$$= \widehat{\beta}_1 \sum (y - \overline{y})(x - \overline{x})$$

Rk: This means we can compute $(\widehat{\beta}_0, \widehat{\beta}_1), \sum \widehat{u}_i^2$, and R^2 from

$$\left(\begin{array}{ccc}
\sum y_i^2 & \sum y_i & \sum y_i x_i \\
n & \sum x_i \\
\sum x_i^2
\end{array}\right)$$

(Before proceeding, you should review the Matrix Algebra 1 notes)

Regression Model in Matrix Notation

$$y_1 = \beta_1 + \beta_2 x_1 + u_1$$

$$y_2 = \beta_1 + \beta_2 x_2 + u_2$$

$$\vdots = \vdots$$

$$y_n = \beta_1 + \beta_2 x_n + u_n$$

Define

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} X_1 = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} X_2 = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} u = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$

$$(nx1) \qquad (nx1)$$

$$X = \begin{bmatrix} X_1 & X_2 \end{bmatrix} \quad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$

$$(nx2) \qquad (2x1)$$

:In matrix notation, the model is

$$y = X\beta + u$$

- LHS is a vector in \mathbb{R}^n
- RHS is a vector in \mathbb{R}^n
- Equality holds component by component

$$y_i = X_i \beta + u_i$$
 (X_i is the i^{th} row of X)
= $1 \cdot \beta_1 + x_i \cdot \beta_2 + u_i$

:Derivation of the OLS estimator

$$\widehat{\beta} = \arg \min_{\widetilde{\beta} \in \mathbb{R}^2} \widetilde{u}' \widetilde{u}$$

$$= \arg \min_{\widetilde{\beta} \in \mathbb{R}^2} (y - X\widetilde{\beta})' (y - X\widetilde{\beta})$$

Rk:

$$\widetilde{u}'\widetilde{u} = \begin{bmatrix} \widetilde{u_1} & \cdots & \widetilde{u_n} \end{bmatrix} \begin{bmatrix} \widetilde{u_1} \\ \vdots \\ \widetilde{u_n} \end{bmatrix}$$

$$= \sum_{i=1}^{n} \widetilde{u_i^2}$$

:Normal equations

Define

$$\widehat{u} = y - X\widehat{\beta}$$
 where $\widehat{u}, y \in \mathbb{R}^n, X \in \mathbb{R}^{nx^2}, \widehat{\beta} \in \mathbb{R}^2$

In matrix notation, the normal equations are

$$X'\widehat{u} = 0$$

$$\Leftrightarrow X'(y - X\widehat{\beta}) = 0$$

But

$$X' = \begin{bmatrix} 1 & \cdots & 1 \\ x_1 & \cdots & x_n \end{bmatrix} y - X\widehat{\beta} = \begin{bmatrix} y_1 - \widehat{\beta}_1 - \widehat{\beta}_2 x_1 \\ \vdots \\ y_n - \widehat{\beta}_1 - \widehat{\beta}_2 x_n \end{bmatrix}$$

$$\therefore X'(y - X\widehat{\beta}) = \begin{vmatrix} \sum (y_i - \widehat{\beta}_1 - \widehat{\beta}_2 x_i) \\ \sum x_i (y_i - \widehat{\beta}_1 - \widehat{\beta}_2 x_i) \end{vmatrix} = 0$$

:Matrix notation for OLS estimator

$$X'(y - X\widehat{\beta}) = 0$$

$$\Leftrightarrow X'y - X'X\widehat{\beta} = 0$$

$$\Leftrightarrow X'X\widehat{\beta} = X'y$$

Rk:

$$X'y = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix} \quad X'X = \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix}$$

Q: Can we solve $X'X\widehat{\beta} = X'y$ for $\widehat{\beta}$?

A: Yes (always) and the solution is unique iff $det(X'X) \neq 0$. Using

$$det(X'X) = n \sum x_i^2 - \sum x_i \sum x_i$$
$$= n \sum (x_i - \overline{x})^2$$

We see that iff $\sum (x_i - \overline{x})^2 > 0$, then

$$\exists (X'X)^{-1} \text{ s.t. } (X'X)^{-1}(X'X) = I_2$$

$$\therefore (X'X)^{-1}(X'X)\widehat{\beta} = (X'X)^{-1}X'y$$

$$\iff I_2\widehat{\beta} = (X'X)^{-1}X'y$$

$$\iff \widehat{\beta} = (X'X)^{-1}X'y$$

Using

$$(X'X)^{-1} = \frac{1}{n\sum(x_i - \overline{x})^2} \begin{bmatrix} \sum x_i^2 & -\sum x_i \\ -\sum x_i & n \end{bmatrix}$$

We get

$$\begin{bmatrix} \widehat{\beta}_1 \\ \widehat{\beta}_2 \end{bmatrix} = \frac{\overline{y} - \widehat{\beta}_2 \overline{x}}{\sum (x_i - \overline{x})(y_i - \overline{y}) / \sum (x_i - \overline{x})^2}$$

Rk: I'll show how to derive other results using matrix notation when we cover ch3.

:An Important decomposition

Note that we can write

$$\widehat{y} = X\widehat{\beta} = X(X'X)^{-1}X'y$$

$$\equiv Py$$

where P = P' (symmetric), and $P = P^2$ (idempotent) Also

$$\widehat{u} = y - \widehat{y} = (I - P)y$$

$$\equiv My$$

where M=M' (symmetric), and $M=M^2$ (idempotent). Therefore

$$y \equiv \widehat{y} + \widehat{u}$$
$$= Py + My$$