Simple Regression Model

1. The Model

yi=ﬁ0+ﬁ1xi+ui i:1,...,n
where
® V. =dependent variable

® X; = independent variable
® u; = disturbance/error term

Eg: y = wage (measured in 1976 dollars per hr)
X = education (measured in yrs of schooling)



Alternative names for

y X

explained variable explanatory variable
response variable control/treatment
predicted variable predictor
regressand regressor



:The joint properties of (y,x) < (u,X) are key to determining
the statistical properties of any estimator. So having a
good idea of what generates the disturbance is important
for good empirical work.

. What generates u?

@ left out variables

@® approximation error for functional form

@® measurement error iny

@® inherent randomness in relationship between y and x



. (Bo, B1) are parameters called the "regression coefficients:
® [, = intercept
® [; =slope coefficient
@ cach choice of (B0, f1) defines a u
< a particular u will define (Bo, f1)



:ASIDE

Sometimes it is useful to imagine that the slope coefficient
varies across observations, I.e.

Bii = P1(Xi, Ui, Vi)

where v; Is independent of (Xj,uj). Such an underlying
model explains why regression coefficients vary from
sample to sample. So for example, response to the
math-stat review might depend on how much math you
know (X;), persistence and intelligence (u;), and luck (v;)
@® The (classical) random coefficients model has S1(vi) — not

very interesting.
@® If we have important nonlinearities, then we’ll see S1(X;).
@® Tough case is if 51 varies with the unobservables u;.



. Linearity is restrictive, but not as bad as it first appears.
For example, suppose we have

V = cgW°tg
definey = In(V) x =In(W) u = In(g). Then
yZIBo-I—,BlX—I—U ,Bo=|n(Co) ,31=C1

Other transformations (of either the LHS or RHS) may help
to induce linearity in parameters, which is what we need.



. If we think of (y,x) as random variables, then f(y|x) tells us
everything about how probability assessment of y vary with
X. Regression models focus on some measure of the
"central tendency" of y given information about x.

(A)  E(u) =0 and cov(u,x) =0
(= E(u) = E(ux) =0)
. (Po, B1) are coefficents of BLP
(B) E(x)=0
(= E(ug(x)) =0 vg(x) € L?)
. E(Y[X) = Bo + BaX
conditional mean or "Population Regression Function”
(C) uindependent of x
(D) vy = PBo+ PixIis a causal relationship (not statistical)



2. Deriving the OLS estimates
Method 1

By definition, OLS estimates satisfy

n

(Bo:By) = arg min 3 _(yi = By = P1xi)?
0P1 =1

Rk: Given any candidate (B, B, ).

® V. = j,+ B,xiis called the fitted value,

® T; =y; -V, is called the residual.

I'll reserve (y,,U;) for the OLS values.



From the F.O.C., we obtain the "normal equations”
n n
NI Y (yi-Bo—-Bx)=0 < > 0 =0
i=1 =1
n n
N2 in(yi—ﬁo—ﬂlxi) =0 @inﬁi =0
i=1 =1

Rk: Lots of authors use notation (bg,b1) for OLS
estimations



Method 2

The BLP generates a disturbance u that satisfies
E(u) = E(xu) = 0. So (Bo, B1) of interest satisfies

E(yi — fo— Paxi) =0
E(x(Yi — Bo — Bixi)) =0

The method of moments approach picks estimators to
satisfy the sample counterparts:

n n
NI+ S yi-Bo-Bx) =0 = &> 0=0
=1 i=1



Computing (B, B,)
From N1/N1’, we get
V:,/Bo‘|'/ﬁ\1Y :/Bozy_ﬁlY
Substitute into N2/N2'. If ) (x; — X)? > 0, then
B - 2 Xi = X)(i - Y)
' D (Xi = X)?

Rks: Sample Regression function is the estimated PRF
(aka fitted regression line)

y:/ﬁ\o+ﬁ1x

‘Prove
B, - 2 Xi(yi—y) 2 (i = X)yi
Y xi—X)2 (X — X)?




‘We've shown that (8, 5,) is unique provided
Y (xi — X)? > 0. Can you show that the fitted values ¥, have
the same values for ANY solution of the normal equations?



Eg: y = wage (measured in 1976 dollars per hr)
X = education (measured in yrs of schooling)
Suppose the fitted regression line is
wage = —0.90 + 0.54 educ

(Notice that | don’t report many digits—use lots for accurate
calculations but don’t present them!)

® cduc = 0 then wage = —. 90 (-90 cents per hr)

® cduc = 8then Wage = — 90 + 0.54(8) = 3.42 ($3.42 per hr)
Q: What's the premium to completing high school vs. grade
87

Q: What's the premium to completing university vs HS?



Algebra of OLS

Everything follows from the normal equations

1. 0; =0

2. inﬁi =0

Some implications of 1. & 2.

3.V = B, + B, X (reg line goes through sample mean)

4.3 0iy. =0

Proof:
Zﬁiyi = Zﬁi<ﬁ0 + /lei>
= BOZﬁi +,§12xiﬁi

=0+0 byl.and 2. (resp)



Rk: The same proof shows »  Ui(co + c1Xi) = 0 V(Co,C1)

4.3 0i(y;,-y) =0
5. (Analysis of variance)
yi = ¥+ Ui

SYi=Y =9, -y +0
Therefore

D Vi-V)2 =D (i -T2+ D Ui +2> (7, - V)
=2 Ji-V)?+ D 00 by

SST = SSE + SSR  (Textbook’s notation)
Total Sum of Squares = Explained SS+Residual SS



6. Coefficient of Determination

r2 _ SSE _ 4 _ SSR
SST SST
0<R?2<1

® R2 = 1 saysexact lin. rel. between y and x
® R2=0says nolin. rel. betweeny and x

:R? gives the fraction of the variance of y that’s "explained"
by the model

EXxercise:
Show R? = r§, = rj, where
o = 2. (Y- Y)KX-X) _
20— V)? 22 (x = X)?]




/. Computing the explained sum of squares
/\2
D (Fi-V7)2 =B D (x—X)?
=B, D _(y-V)(x-X)
Rk: This means we can compute (B,,8,),>_ 0;,and R2 from
[y Ty Ty )
n ZXi
\ 2%

(Before proceeding, you should review the Matrix Algebra 1
notes)




Regression Model in Matrix Notation

Define

y:

Y1 = B1+ PaX1+ U1
Yo = B1+ PaXo + U>

Yn

= [1 + P2Xn + Up




P1
X=| X1 X | 'B:_,Bz )
(NX2) (2x1)
.In matrix notation, the model is
y=XB+U

® LHSisavectorinR"
® RHSisavectorinR"
® Equality holds component by component

yi = Xif+ui (Xjis the i row of X)
=1.B1+Xi-P2+Uj



:Derivation of the OLS estimator

B = argminT'w
BeR?

= arg min(y - Xp)'(y - Xp)

RK:

S

[
L




:Normal equations
Define
0=y—XB where U,y e R", X € R™2 B c R2
In matrix notation, the normal equations are
X0 =0
& X(y—-XB) =0
But

=)
|

X' = y — X




5 Xy = XB) =

B in<Yi ~ ﬁl ~ ﬁzxi>

Z(yi — /Bl - ﬁzxi>

:Matrix notation for OLS estimator
X'(y—XB) = 0

RK:

2.V
ZXiYi

= X'y-X'XB =0
= X'XB = X'y
xxo| Mo
DX DoX{




Q: Can we solve X'XB = X'y for ?
A: Yes (always) and the solution is unique iff det(X'X) = O.

Using
det(X'X) =n Y xZ =Y Xi D Xi
=N (Xi — X)?
We see that iff » "(xi — X)? > 0, then
IX'X) L st (X'X)LX'X) = 1,
XX TXIX)B = (X'X) Xy
= 1,8 = (X'X) Xy
= B=X'X)"Xy



181 _ V_ﬂZY
B, 2_(Xi = X)(Yi = V) 2 (Xi = X)?

Rk: I'll show how to derive other results using matrix
notation when we cover ch3.



:An Important decomposition

Note that we can write

¥ = XB = X(X'X)IX'y
= Py

where P = P’ (symmetric), and P = P? (idempotent)

Also

U=y-y=(>U-P)y
= My
where M = M’ (symmetric), and M = M? (idempotent).
Therefore
y=y+1u
= Py + My



